延迟随机并行梯度下降算法用于相干合成中 倾斜控制的数值模拟

王 雄 王小林 周 朴 许晓军 舒柏宏

(国防科学技术大学光电科学与工程学院,湖南长沙 410073)

摘要 对延迟随机并行梯度下降(D-SPGD)算法在远距离相干合成中倾斜控制进行系统研究,并与传统的随机并 行梯度下降(SPGD)算法进行对比。理论研究结果表明,该算法可以明显降低传输延时对控制带宽的限制,显著提 高远距离系统倾斜控制的效果,有望在远距离相干合成系统中得到实际应用。 关键词 激光光学;相干合成;倾斜波前;延迟随机并行梯度下降算法;主动控制 中图分类号 TN248 **文献标识码** A **doi:** 10.3788/CJL201340.s102007

Numerical Simulation of Tilt-Tip Control in Coherent Beam Combining Using Delayed-Stochastic Parallel Gradient Descent Algorithm

Wang Xiong Wang Xiaolin Zhou Pu Xu Xiaojun Shu Bohong

(College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China)

Abstract The systematic research on tilt-tip control in coherent beam combining using delayed-stochastic parallel gradient descent (D-SPGD) algorithm is demonstrated. The control effects are compared with those of the traditional stochastic parallel gradient descent (SPGD) algorithm. The theoretical research results reveal that the D-SPGD algorithm can weaken the limitation of time-delay on control bandwidth, and improve the tilt-tip control effect of long-distance system obviously. D-SPGD algorithm is a promising method to be applied in practical system of coherent beam combining over long distance.

Key words laser optics; coherent beam combining; tilt-tip wavefront; delayed-stochastic parallel gradient descent algorithm; active control

OCIS codes 140.3290; 140.3298; 140.3425

1 引 言

相干合成是在保持高光束质量的同时获得高功 率输出的重要途径之一^[1-5]。在相干合成中,主要 涉及到三个方面的内容^[6]:高占空比光束拼接、倾斜 波前控制和活塞相位锁定。其中高占空比光束拼接 使各个子光束排列紧密,提高合成光束中心主瓣的 能量;倾斜波前控制主要是通过倾斜控制器件^[2,7-8] 对光束的倾斜波前误差进行补偿,使各个光束在目标处高度重合;活塞相位锁定即通过相位调制器使各光束的活塞相位差保持恒定。在目前的相干合成系统中,倾斜波前的控制考虑得不多^[2,6-11]。要进一步提高相干合成系统的性能,光束倾斜波前的控制成为不得不考虑的重要问题。

随机并行梯度下降(SPGD)算法在优化式自适

收稿日期: 2013-06-22; 收到修改稿日期: 2013-10-21

作者简介:王 雄(1987—),男,硕士研究生,主要从事高能激光方面的研究。E-mail: wangxiong23@gmail.com

导师简介:舒柏宏(1960—),男,教授,硕士生导师,主要从事高能激光技术方面的研究。

E-mail: shu_bh@tom.com(通信联系人)

应光学中得到了广泛应用,也是相干合成的主要控 制算法之一^[12-14]。在远距离相干合成系统中,尤其 是当迭代速率较高、传输距离较远时,光束在目标与 发射系统之间的传输时延大于正常近距离单次控制 迭代的耗时,成为系统控制带宽的主要限制因素之 一。为了提高 SPGD 算法的迭代速率,Weyrauch 等^[15]在传统 SPGD 算法的基础上进行了改进,提出 延迟随机并行梯度下降(D-SPGD)算法,并用于目 标在回路实验中的锁相控制,体现了 D-SPGD 算法 的优越性。

本文以相干合成系统中倾斜波前畸变为控制对 象,对远距离系统中 D-SPGD 的控制效果进行数值模 拟,并与传统 SPGD 进行比较,系统地分析该算法在 提高远距离相干合成系统控制带宽的效果和优势。

2 模型建立

假设合成的光束沿着正交直角坐标系的 z 轴传 播,不管是在平行发射还是在共形发射系统中,当引 入倾斜波前误差时,各个单元光束的传播方向与 z 轴成一定夹角。数值模型中引入坐标变换法,将各 个单元光束的坐标系沿着原坐标系旋转相应的角 度,再在新的坐标系中使用光束传播公式进行计算。 坐标变换的公式如下:

fiber collimator

式中 X,Y,Z 是坐标变换后的坐标,x,y,z 是坐标变换前的坐标, θ_x 是新坐标系绕原坐标系 x 轴旋转的角度, θ_y 是新坐标系绕原坐标系y 轴旋转的角度,如图 1 所示。

图 1 坐标变换示意图

Fig. 1 Sketch map of coordinate transformation

以共形发射为例,在理想情况下,各个单元光束 在目标处完全重合,相位锁定后合成光束的能量集 中在光斑主瓣上,能量集中度高,光束质量很好。但 在实际情况中,由于机械振动、大气湍流和装配误差 等因素的影响,各单元光束无法在目标处完全重合, 即使进行了锁相控制,合成光束的质量也受到了严 重的影响,如图 2 所示。

图 2 相干合成中共形发射示意图。(a) 无倾斜误差的情况;(b) 有倾斜误差的情况。插图:7 路激光的模拟远场光斑 Fig. 2 Sketch map of conformal transmitting in coherent beam combining. (a) Situation without tilt-tip error; (b) situation with tilt-tip errors. Inset; simulated far field patterns of 7 lasers array

数值模拟中选择圆形排布的共形发射阵列光 束,传输距离 5 km,为了降低子光束截断误差的影 响^[16],激光阵列的占空比为 0.4。占空比定义为单 元高斯光束束腰半径 ω_0 与相邻子光束中心间距 *d* 之比: $f = \omega_0/d$ 。设定出射光束为基模高斯光束,激 光波长为 1064 nm,子光束半径为 10 mm,则单元光 束远场发散角为 67 μ rad,记为 θ 。图 3 给出了不同 路数相干合成光束的近场和远场光强分布。

SPGD 在优化式自适应光学中被用于活塞相位 误差的校正,传统 SPGD 算法的具体实现过程是:

1) 生成随机扰动向量并转化为电压控制信号 $\delta u = \{\delta u_1, \delta u_2, \dots, \delta u_M\},$ 各个扰动信号服从均值为 0 的伯努利分布,且均方差为 δ, M 是控制路数;

2) 将随机扰动电压 δu 施加到各个倾斜控制单元,获得性能评价函数 $J_{+} = J(u + \delta u)$;

3)将随机扰动电压 ∂u 反向施加到各个倾斜控制单元,获得性能评价函数 $J_{-} = J(u - \partial u)$;

4) 计算两次扰动中评价函数的变化量 $\delta J = (J_+ - J_-)/2$;

5) 根据 $u^{(k+1)} = u^{(k)} + \gamma \delta u^{(k)} \delta J^{(k)}$ 更新迭代参

数,其中 k 为迭代次数,γ 为迭代步长;

6)转至步骤1)进入下一次迭代,直至人工停止 优化算法过程。

由于系统各个控制单元通常是串行工作的,相 干合成系统单次迭代需要的时间为

$$T_0 = T_{\text{near}} + t_{\text{delay}}, \qquad (2)$$

式中 T_{near} 是忽略光束传输延时的系统单次迭代需 要的时间,主要包括性能评价函数获取延时、算法控 制器数据处理延时、扰动信号输出延时等。 T_{near} 主 要是由系统的硬件性能决定的,在通常情况下, T_{near} 相当短,且远小于校正对象(活塞相位、倾斜波前等) 的平均变化周期(记为 T_e),这样才可以保证系统在 足够的迭代次数内对相位误差进行有效的校正。 t_{delay} 是光束传输延时,主要是指激光从相位校正器 出发,传输到目标后被反射到光电探测器上所经历 的时间。通常情况下,光电探测器和激光发射阵列 之间的距离很近,以至于可以忽略,因而 t_{delay} 实际上 等于激光发射端与目标间距的 2 倍除以光速。当传 输距离比较近时,例如实验室环境下, t_{delay} 一般在 0.1 μ s以下,远小于 T_{near} ^[15],此时 t_{delay} 对系统控制带 宽的影响可以忽略不计。

当光束传输距离较远时,例如7km,即在目标 在回路的远距离系统中^[15],t_{delay}可能与T_{near}相当,甚 至大于其若干倍,光束传输耗时就成为了相干合成 系统的控制带宽的主要限制因素。此时系统单次迭 代耗时T₀很有可能不再满足远小于T_e的条件,因 此系统的控制效果将大大降低;当T₀大于等于T_e 时,优化式系统的控制将无法有效地校正误差。本 文中只讨论即使在远距离系统中T₀也明显小于T_e 的情况。

远距离系统中,假设 t_{delay} 是 T_{near} 的 Δn 倍(Δn 取 正整数),利用传统 SPGD 算法进行反馈控制时,有 两种控制信号的输出方案。第一种是考虑光束传输 延时,控制系统对激光相位进行校正,然后等待校正 后的激光波前从目标反射到探测器,获得评价函数 后进行下一次控制。此时系统的单次迭代耗时为 T₀。第二种则是不考虑光束传输延时,直接以探测 器即时获得的数据作为评价函数的依据进行迭代控 制,此时系统的单次迭代耗时为 T_{near}。在第二种控 制方式中,由于光束传输的延时,在初始的前 △n 次 迭代中探测器获得的光斑数据是没有变化的。因而 控制系统根据评价函数的同一个值进行迭代,这是 没有校正效果的。在后面的迭代中,第 n+1 次控制 所依据的评价函数实际上是第 n-Δn 次校正产生 的,而不是 SPGD 算法中规定的由第 n 次校正产生。 这样虽然表面上系统的迭代速率比第一种提高了, 但是系统利用的评价函数和随机扰动没有对应起 来,控制效果将大大降低。

为了提高远距离情况下 SPGD 算法的迭代速 率,Weyrauch 等^[15]在传统 SPGD 算法的基础上进 行了改进,提出了 D-SPGD 算法。该算法考虑了光 束传输延时的影响,定义延时系数 $\Delta n = t_{delay}/T_{near}$, Δn 取正整数,并将传统 SPGD 算法的校正信号更新 方式改为 $u^{(k+1)} = u^{(k)} + \gamma \delta u^{(k)} \delta J^{(k-\Delta n)}$,采用上述第 二种方法输出控制信号。该算法在初始的前 Δn 次迭 代中,评价函数值不变,同样没有校正效果,但这几 次迭代的目的是引入算法的随机扰动。在第 $\Delta n+1$ 次迭代,按照D-SPGD的更新方式,系统根据探测器 得到的第1次随机扰动产生的光强分布变化更新电 压,得到第 Δn +1次的控制信号。由于前 Δn 次的评 价函数值相同,控制电压基本没有明显的更新,第 $\Delta n + 1$ 次的电压与第1次的电压相差不大,从而保 证了此次迭代控制一定的有效性。在此后的迭代中, 算法逐渐将随机扰动和其产生的评价函数值对应起 来,单次迭代耗时为 T_{near} 。相对于传统SPGD算法, D-SPGD 算法在缩短迭代时间的同时保证了迭代的 效果。这种改进的优化算法实际上是将算法控制器 在光束传输过程中等待的时间充分利用了起来,从 而明显提高系统有效迭代速率和控制带宽。

在远距离系统中,设激光发射阵列与目标之间 距离(即光束传输距离)为L,则 t_{delay} 可以近似表示 为2L/c,c是空气中光速。这样,延迟系数可以表示 为 $\Delta n \approx 2L/(c \times T_{near})$ 。为了便于对比,理论模型中 光束传输距离L是不变的,均为5km。为了研究 Δn 对算法控制效果的影响,需要使用不同的 Δn 进行仿真,此时默认通过改变 T_{near} 的值以达到改变 Δn 的效果,这对仿真的结果不会产生实质性的影响。

另外,根据上文的分析,远距离系统中 D-SPGD 算法的单次迭代耗时与近距离系统中 SPGD 算法 相同;对于远距离系统中 SPGD 算法,考虑到光束 传输延时的影响,每次迭代控制之间都要进行等待, 算法的单次迭代耗时约为近距离系统中 SPGD 算 法的 Δn(或 Δn+1)倍。在仿真结果中,所有图中标 注的迭代步数均是近距离系统中 SPGD 算法的选 代步数;在远距离系统中,D-SPGD 算法中标注的迭 代步数没有变,就是实际的迭代步数;但远距离系统 中 SPGD 算法标注的迭代步数是实际迭代步数的 Δn 倍。这样就用迭代步数的大小表示了迭代耗时 的长短,保证了三种情况下仿真的迭代控制时间基 本一致,便于对不同算法的收敛速率和时间进行分 析对比。

桶中功率(PIB, *J*_{PB})^[17] 是远场光场通过以光轴 为中心光阑的光强之和,计算量小,且较好地反映了 远场光斑的能量集中度,在优化式相干合成中得到 了广泛的应用。

$$J_{\rm PIB} = \frac{\iint \tau(x, y) I(x, y) \, dx dy}{\iint I(x, y) \, dx dy}, \qquad (3)$$

式中 r(x,y)为光阑透射率函数。桶中功率越大,波 前畸变越小,光强能量集中度越高。本文使用桶中 功率作为评价函数,利用 D-SPGD 算法进行相干合 成中倾斜波前控制的数值模拟。数值模拟以近距离 情况下(即光束传输耗时可以忽略不计)SPGD 算法 的控制作为比较的基准,对远距离相干合成系统中 (即光束传输耗时为控制带宽主要限制因素)SPGD 和 D-SPGD 算法的倾斜控制效果进行详细地对比 和分析。

另外,在相干合成系统中,一般采用单频^[15]或 者窄线宽^[18]激光作为种子进行分束并放大后再合 成。各路光束来自同一个种子激光器,可以具有相 同的频率、偏振态(可通过保偏器件或者偏振控制解 决)和活塞相位(可通过锁相控制解决)。同时,对于 单频激光器,如线宽为 100 kHz,则相干长度约 3 km,完全可以满足系统实验要求。对于窄线宽激 光器,可以利用光纤延迟线控制光程差,若线宽小于 10 GHz,则相干长度大于 3 cm,利用毫米量级的光 程差控制技术,即可保证系统具有足够的相干性。 本文研究的主要对象是相干合成系统中的倾斜控制,因此默认仿真系统的相干性满足要求,且不作为 仿真控制的对象。实际上,这些条件在一般的相干 合成系统中都是比较容易满足的。

3 静态校正结果

对静态情况下 SPGD 和 D-SPGD 算法的倾斜 控制效果进行对比研究,分析了不同倾斜误差、不同 延迟系数和不同激光数目对算法的影响。

3.1 整体校正对比

对两种算法的静态控制收敛曲线进行模拟和对 比。激光单元数目为 7,延迟系数为 8,初始倾斜误 差服从均值为 0、方差为 10.05 μ rad(0.15× θ)的正 态分布。为获得最佳的收敛效果,进行了多次计算 比较,以选取最优的控制参数。最终 SPGD 算法中 δ 取值为 0.03, γ 为 900, 而 D-SPGD 算法中 δ 取值 为 0.025, γ 为 900,并绘制了 50 次计算结果的平均 曲线。仿真结果如图 4 所示,图中 4(a)为近距离情 况下 SPGD 算法 PIB 收敛曲线和校正前后远场光 斑的对比,图 4(b)为远距离系统中 SPGD 算法 PIB 收敛曲线和光斑,图 4(c)为远距离系统中 D-SPGD 算法收敛曲线和光斑。

由图 4(a)可以看出 SPGD 算法的控制效果明显,由于初始误差较大,所以 PIB 收敛效果有限,留 有部分倾斜波前残差,约 150 次迭代后归一化 PIB 收敛于 0.71。由图 4(b)可见由于传输耗时的影响, 控制效果明显下降,250 次迭代后 PIB 才达到 0.43 左右,且尚未收敛。从图 4(c)中可以发现该算法可 以有效地提高远距离系统中的倾斜控制效果,约 200 次迭代后归一化 PIB 收敛于 0.66。从图 4(c) 还可以发现,在初始的 8 次迭代中,系统的 PIB 是没 有变化的,这与算法的思路相符。

3.2 不同倾斜误差

在不同倾斜误差情况下对 SPGD 算法和 D-SPGD 算法的倾斜控制效果进行模拟仿真。激光数 目为 7, 延时系数 Δn 设定为 8,获得均方误差 (MSE)分别为 3.35、10.05、16.75 μ rad 情况下的仿 真结果如图 5 所示。从图中可以发现随着倾斜误差 的增大,远距离合成系统中 SPGD 算法的控制效果 明显下降,而 D-SPGD 算法较好地弥补了传输耗时 的影响,PIB 收敛曲线接近近距离 SPGD 算法的收 敛曲线。

图 4 7 路激光阵列的 SPGD 和 D-SPGD 算法静态校正 PIB 曲线和光斑

Fig. 4 Static correction PIB curves and patterns of 7 lasers array using SPGD and D-SPGD algorithms

图 5 不同倾斜误差时 SPGD 和 D-SPGD 算法收敛曲线 Fig. 5 Convergence curves of different tilt-tip errors using SPGD and D-SPGD algorithms

3.3 不同延迟系数

图 6 给出了不同延迟系数(传输距离)对两种算 法的控制效果的影响。激光数目为 7,初始倾斜误 差的均方差为 10.05 μ rad。图 6(a)、(b)和(c)的 Δn 分别为 8、16 和 24。以近距离的 SPGD 算法收敛曲 线作为比较的基准,可以看出随着延迟系数的增加, 两种算法的控制效果均有不同程度的下降。但是远 距离情况下 D-SPGD 算法的控制效果依然明显高 于 SPGD 算法。原因主要是 Δn 越大, SPGD 算法 单次迭代耗时越长, 而 D-SPGD 算法的单次迭代耗 时保持不变, 从而保证了收敛的高效性。

图 6 不同传输距离时 SPGD 和 D-SPGD 算法收敛曲线

Fig. 6 Convergence curves of different propagation distances using SPGD and D-SPGD algorithms

3.4 不同激光数目

数值模拟研究了激光数目对控制效果的影响。 延迟系数为 8,初始倾斜误差均方差为10.05 μrad, 仿真结果如图 7 所示。图 7(a)、(b)和(c)分别对应 激光数目为 7、19 和 37。随着相干合成激光数目的 增加,近距离和远距离 SPGD 算法的收敛速度均有 所下降。而远距离情况下 SPGD 算法的收敛效果 下降更为严重,在19和37单元阵列中几乎没有控 制效果。值得注意的是,在激光数目较多时 D-SPGD 算法的控制效果更接近于近距离 SPGD 算法 的控制效果,几乎消除了光束传输耗时对系统控制 的影响。

图 7 不同激光数目时 SPGD 和 D-SPGD 算法收敛曲线

4 动态校正结果

在静态倾斜校正的基础上对两种算法的动态控制效果进行数值模拟,以进一步分析 D-SPGD 算法 在远距离合成系统中的优势。考虑到常见的倾斜控 制器件的响应频率约为 $1 \sim 2 \text{ kHz}^{[7-9]}$,为了结合实际和简化计算,设定模拟控制系统中 SPGD 和 D-SPGD 的迭代速率均为 1 kHz,激光单元数目为 7, 倾斜误差服从均值为 0、均方差为 10.05 μ rad (0.15× θ)的正态分布。

4.1 动态校正曲线

数值模似仿真了不同倾斜误差频率下两种算法 动态控制的 PIB 收敛曲线。激光数目为 7,延迟系 数是 8,仿真结果如图 8 所示。图 8(a)、(b)和(c)是 倾斜误差频率分别为 2、10、40 Hz 情况下,近距离系 统中 SPGD 算法的 PIB 动态收敛曲线;图 8(d)、(e) 和(f)则是远距离系统中 SPGD 算法的 PIB 动态收 敛曲线;图 8(g)、(h)和(i)则是远距离系统中 D-SPGD 算法的 PIB 动态收敛曲线。从图中可以发 现,误差频率的逐渐增大使两种算法的控制效果相 应变差。而远距离情况下 SPGD 算法的控制效果 最差,归一化 PIB 均值最大只有 0.161。而远距离 情况下 D-SPGD 算法的控制效果与近距离情况下 SPGD 算法的控制效果相差不多,误差频率为 2 Hz 时其归一化 PIB 均值为 0.622,略小于近距离情况 下 SPGD 算法的 0.631,但远高于远距离情况下 SPGD 算法的 0.161。因此在远距离系统中 D-SPGD 算法的动态控制效果相比 SPGD 算法具有明 显的优势。

图 8 不同误差频率下 SPGD 和 D-SPGD 算法 PIB 收敛曲线

4.2 不同误差频率

根据仿真结果,给出了倾斜误差频率与两种算

法的归一化 PIB 均值的关系曲线。激光数目为7, 延迟系数是8,结果如图9所示。从图中可以看出 随着倾斜误差频率的增加,归一化 PIB 均值呈明显 下降趋势。在误差频率小于40 Hz时,D-SPGD算 法的 PIB 值明显高于远距离系统中 SPGD 算法的 PIB 值,但略低于近距离系统中 SPGD 算法的 PIB 值。误差频率大于40 Hz 以后,D-SPGD 算法的控 制效果与远距离系统中 SPGD 的相当,已经无法有 效降低传输耗时对系统带宽的影响。

4.3 不同延迟系数

为了分析延迟系数对相干合成系统中控制效果 的影响,对不同延迟系数下两种算法的控制效果进 行了数值模拟,得到了系统控制带宽与延迟系数的 关系曲线,如图 10 所示。系统控制带宽定义为当 PIB 均值降至理想情况下最大 PIB 均值的 80%时 倾斜误差的频率。当延迟系数 Δn 为 0 时,D-SPGD 算法和 SPGD 算法的控制带宽均在 4.68 Hz 左右。 随着延迟系数的增加,两种算法的控制带宽均有所 下降,但 SPGD 算法的下降更为严重。D-SPGD 算 法的控制带宽始终明显高于 SPGD 算法,表明其对 系统的控制带宽的提升效果显著。该结果的主要原 因是远距离系统中 SPGD 算法的单次迭代耗时约 为 D-SPGD 算法的单次迭代耗时的 Δn 倍。因此在 相同时间内,当 Δn 大于 0 时,相对于 SPGD 算法, D-SPGD 算法可以执行更多次的迭代步骤,从而校 正频率更高的倾斜误差,因而控制带宽也就更高。

图 10 控制带宽与延迟系数 Δn 关系曲线 Fig. 10 Control bandwidth curves as a function of delay factor Δn

5 结 论

通过数值模拟对 D-SPGD 算法进行了全面深 人的理论研究。结果表明,D-SPGD 算法在远距离 相干合成系统中可以有效提高系统控制带宽,激光 数目的增加对该算法的控制效果影响不大,其收敛 曲线与近距离 SPGD 算法的曲线相当。D-SPGD 算 法有望在远距离相干合成的实际应用中大幅提高系 统的控制带宽。需要指出的是,D-SPGD 算法对相 干合成中倾斜控制的影响,在锁相控制中,也有类似 的结论。在后续的工作中,拟搭建较远距离的相干 合成系统对 D-SPGD 算法的优势进行实验验证。

参考文献

1 Dorschner T A. Adaptive photonic phase locked elements[C]. MTO Symposium, 2007. 2 Vorontsov M. Adaptive photonics phase-locked elements (APPLE): system architecture and wavefront control concept [C]. SPIE, 2005, 5895: 589501.

 Liu Zejin, Wang Xiaolin, Zhou Pu, *et al.*. 1.56 kW high power output realized by 9 fiber lasers coherent beam combining[J]. Chinese J Lasers, 2011, 38(7): 0705008.
刘泽金, 王小林,周 朴,等.9路光纤激光相干合成实现 1.56 kW高功率输出[J]. 中国激光, 2011, 38(7): 0705008.

4 Ma Yanxing, Si Lei, Dong Xiaolin, *et al.*. Study on cost function in the coherent beam combination of fiber lasers based on dithering technique [J]. Chinese J Lasers, 2012, 39 (2): 0202003.

马阎星,司 磊,董小林,等. 抖动法激光阵列相干合成技术中的性能评价函数研究[J]. 中国激光, 2012, 39(2): 0202003.

- 5 Wang X, Ma Y, Zhou P, *et al.*. The 260-W coherent beam combining of two compact fibre amplifier chains [J]. Chin Phys B, 2011, 20(11): 114203.
- 6 Mikhail A Vorontsov, Thomas Weyrauch, Leonid A Beresnev, et al.. Adaptive array of phase-locked fiber collimators analysis and experimental demonstration[J]. IEEE J Sel Top Quant Electron, 2009, 15(2): 269-280.
- 7 Wilcox C C, Andrews J R, Restaino S R, et al.. Analysis of a combined tip-tilt and deformable mirror[J]. Opt Lett, 2006, 31 (6): 679-681.
- 8 Chao G, Xinyang L, Xiaojun Z, et al.. Coherent beam combination of an optical array using adaptive fiber optics collimators[J]. Opt Commun, 2011, 284(24): 5531-5536.
- 9 Liu L, Vorontsov M A, Polnau E, et al.. Adaptive phase-locked fiber array with wavefront phase tip-tilt compensation using piezoelectric fiber positioners[C]. SPIE, 2007, 6708; 67080K.
- 10 Leonid A Beresnev, Thomas Weyrauch, Mikhail A Vorontsov, et al.. Development of adaptive fiber collimators for conformal fiber-based beam projection systems [C]. SPIE, 2008, 7090; 709008.
- 11 Zhou P, Chen Z, Wang X, et al.. Tolerance on tilt error for coherent combining of fiber lasers[J]. Chin Opt Lett, 2009, 7 (1): 39-42.
- 12 Zhou P, Liu Z, Wang X, et al.. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application[J]. IEEE J Sel Top Quant Electron, 2009, 15(2): 248-256.
- 13 Wang X, Zhou P, Ma Y, et al.. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm [J]. Optics Letters, 2011, 36(16): 3121-3123.
- 14 Liu L, Vorontsov M A. Phase-locking of tiled fiber array using SPGD feedback controller[C]. SPIE, 2005, 5895; 58950P.
- 15 Weyrauch T, Vorontsov M A, Carhart G W, et al.. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Opt Lett, 2011, 36(22): 4455-4457.
- 16 Zhou P, Wang X, Ma Y, et al.. Optimal truncation of element beam in a coherent fiber laser array[J]. Chin Phys Lett, 2009, 26(4): 044206.
- 17 Muller R A, Buffington A. Real-time correction of atmospherically degraded telescope images through image sharpening[J]. J Opt Soc Am, 1974, 64(9): 1200-1210.
- 18 Yu C X, Augst S J, Redmond S M, et al.. Coherent combining of a 4 kW, eight-element fiber amplifier array [J]. Opt Lett, 2011, 36(14): 2686-2688.

栏目编辑:张 腾